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Abstract
Traditional target detection algorithms are applied to hyper-

spectral imagery where per-pixel test static scores are generated.
These univariate scores are then ranked followed by an applied
threshold, which attempts to isolate targets from false alarms. This
paper generates two dimensional decision spaces that can further
separate targets from false alarms, especially those from saturated
pixels. These spaces are generated using the Physics-Based Struc-
tured InFeasibility Target-detection (PB-SIFT) algorithm which in-
cludes input from structured backgrounds and target spaces. Our
approach to target detection involves the generation of target spaces
through use of a physical model that predicts what the target will
look like to the sensor in uncompensated imagery. That is, rather
than atmospherically compensate the imagery, we take the oppo-
site approach by estimating what the sensor-reaching target signa-
ture will be in radiance space. Two dimensional decision spaces are
generated using HYDICE desert imagery. A one dimensional linear
threshold is developed that can further separate pixels that moder-
ately look like targets of interest.

Introduction
This paper investigates a geometric hybrid technique for the

detection of subpixel targets in uncompensated image spectrometer
data. Physical models are used to predict what the sensor-reaching
radiance looks like based on direct solar illumination, upwelled and
downwelled radiances as well as reflectivity of the target. This ap-
proach uses an atmospheric propagation model to produce an illu-
mination invariant (radiance) target space that can be used in the
detection scheme outlined in this paper.

The approach we take throughout this research is geometric or
structured in nature. Therefore, in developing our hybrid algorithm,
we describe the background data using a linear subspace approach
characterized by endmembers. We then present a detector that tells
us how much influence the background space has on an image pixel.
The output of such a detector is an abundance-like term where large
values are synonymous with targets. In general, however, the output
of the detector may produce large values, not only for actual targets,
but for any other spectral anomaly that has a significant projection
(e.g., a bright or saturated pixel) thus producing false alarms. Geo-
metrically, we recognize where these cases can occur. We note that
there exists many different image pixels that can have the same back-
ground influence or abundance. These pixels may manifest them-
selves as false positives. We separate such pixels through incorpora-
tion of an operator called the Structured Infeasibility Projector (SIP)
which incorporates a physically derived target space. Together, the
detector and SIP form a hybrid algorithm called the Physics Based-
Structured InFeasibility Target-detector (PB-SIFT). When applied to

real data, the algorithm produces a two dimensional decision space.
Decision boundaries can then be drawn in this space so as to sepa-
rate target from non-target-like pixels. Additionally, this two dimen-
sional decision space can be reduced to a single dimension through
image (test statistic) division. The algorithms are applied to to HY-
DICE desert imagery where analysis is made through use of 2D scat-
ter and 1D histogram plots.

Background and Theory
Physics Based Modeling(PBM) and Target Spaces

In target detection, we often seek to atmospherically compen-
sate hyperspectral imagery so as to convert sensor reaching radiance
to ground leaving spectral reflectance. Once the imagery has been
compensated, detection algorithms are used to compare image re-
flectances to library or measured reflectances in search of a desired
target. Rather than compensate the imagery, an alternative is to esti-
mate what the ground leaving spectral reflectance would look like as
seen by the sensor in radiance space [1]. This approach entails mod-
eling the propagation of a target reflectance spectrum through the
atmosphere up to the sensor. The advantage this technique has over
that of compensated imagery is that target illumination variations
can be integrated into the process through use of a physical model
thus making the approach invariant to illumination effects. Schott
[2] derives such a physical model for the spectral radiance reaching
an airborne or satellite sensor which incorporates direct illumination
variation as well as downwelling and upwelling (or path) radiance.
This can be expressed in simplified form as

Lp(λ ) =
∫

λ

βp(λ )
[(

E ′
s(λ )τ1(λ )cosθ +

FEd(λ )
)

τ2(λ )
r(λ )

π
+Lu(λ )

]
dλ (1)

where Lp(λ ) is the effective spectral radiance in the pth band in units
of [Wcm−2sr−1µm−1], E ′

s(λ ) is the exoatmospheric spectral irradi-
ance from the Sun in units of [Wcm−2µm−1], τ1(λ ) is the transmis-
sion through the atmosphere along the Sun-target path, θ is the angle
from the surface normal to the Sun, F is the fraction of the spec-
tral irradiance from the sky (Ed(λ )), incident on the target (i.e., not
blocked by adjacent objects), sometimes called shape factor, τ2(λ )
is the transmission along the target-sensor path, r(λ ) is the spec-
tral reflectance factor for the target of interest (i.e., r(λ )/π is the
bidirectional reflectance [sr−1]), Lu(λ ) is the spectral path radiance
[Wcm−2sr−1µm−1], and βp(λ ) is the normalized spectral response



of the pth spectral channel of the sensor under study where

βp(λ ) =
β ′

p(λ )
∫

β ′
p(λ )dλ

(2)

with β ′
p(λ ) being the peak normalized spectral response of the pth

channel. Schott [2] also describes how the MODTRAN radiative
transfer code [3] can be used to solve for each of the radiometric
terms in Eq. (1) (i.e., E ′

s(λ ), τ1(λ ), τ2(λ ), Ed(λ ), and Lu(λ )) given
a set of atmospheric and illumination descriptors. Once the terms
are solved for, the spectral radiance target vector x observed by a
p-channel sensor can be expressed as

x = [L1(λ ),L2(λ ), . . . ,Lp(λ )]T . (3)

In practice a family of radiance vectors is usually generated to
account for lack of knowledge about the atmospheric, illumination
and viewing conditions. This is accomplished by varying the inputs
to MODTRAN to span a range of variables. In doing so, a wide
range of potential target spectral vectors spanning a target space can
be generated from a single target reflectance spectrum. In general,
many of the input parameters to MODTRAN are usually known at
the time of image acquisition or can be reasonably estimated (e.g.,
atmospheric and aerosol model, day of year, location, time of day,
sensor height, etc.). For this research, emphasis is placed on varying
unknown MODTRAN parameters such as visibility, total column
integrated water vapor (or water vapor scale factor in MODTRAN)
and ground topography. In the case of water vapor scale factor, a
physics based atmospheric compensation algorithm can be used to
estimate per pixel total column water vapor which can then be con-
verted to an appropriate range of scale factors. In addition to MOD-
TRAN input parameters, target orientation, or more precisely illu-
mination, can be varied to account for projected area effects. This
is implemented as a target rotation angle, relative to the zenith angle
computed in MODTRAN, for a given time of day. The new irradi-
ance expression for this modulation of the direct term is given by

Es new(λ ) =
Es(λ )
cosσ ′ cosσnew (4)

where Es(λ ) = E ′
s(λ )cosσ ′, σ ′ is the zenith angle, σnew = σ ′ −

σrot and σrot is the user specified angle of rotation. In addition to
target orientation, the amount of scattering in the atmosphere onto
the target (downwelled radiance) is also modulated. This modulation
is accounted for by using the shape factor term of Eq. (1). Details on
the importance these parameters have on derived target spaces and
detection can be found in the literature [4].

Structured Detection and Infeasibility Metric
If the target and background spaces are described using geo-

metric techniques then the application of a detector based on vec-
tor geometry is most appropriate. One such algorithm that relies
on (orthogonal) projections is the Orthogonal Subspace Projection
(OSP) detector [5]. This can be expressed to include input from
target spaces such that we have

TPBosp(x) =
‖PTP⊥

B x‖
‖PTP⊥

B tavg‖
(5)

where PT = TT† where T† is the pseudo-inverse of T defined as
T† = (TT T)−1TT and P⊥

B = I−BB†. Matrices T and B are matri-
ces comprised of endmembers (in columns) that span the target and

Figure 1. HYDICE hyperspectral desert image. Shown is a 250 × 300 pixel ×
170 band subset extracted from a larger HYDICE flight line.

background subspaces, respectively. The vector tavg is the average
target space spectrum.

The structured infeasibility projector (SIP) provides for a mea-
sure of un-target-like behavior by projecting the test pixel onto the
subspace orthogonal to the target space and is expressed as

TSIP(x) = ||P⊥
T x|| (6)

where P⊥
T = I−TT†. The detector of Eq. (5) and SIP metric of Eq.

(6) form the Physics Based-Structured InFeasibility Target-detector
(PB-SIFT) which produces a two dimensional decision space where
probable targets have large abundances and low SIP scores. This
concept of using an added “infeasibility” metric similar to what the
SIP produces was motivated by the original work of Boardman [6].
Here, the developed infeasibility concept was stochastic in nature
where in this research we set out to develop a geometric equivalent.
This metric can also be extended to include the joint statistics of
target and background spaces [4].

Results
The previously mentioned SIFT algorithm was applied to HY-

DICE desert imagery collected in Arizona. A subset, derived from a
much larger flight line, can be seen in Figure 1. Due to low signal-to-
noise and heavy water absorption, only 170 of the original 210 spec-
tral channels (0.4 to 2.5µm) were used during processing. Overall,
this image contains approximately 60 man-made objects positioned
against a desert background. Objects are of varying size (full/sub-
pixel) and spectral character. The target of interest was a green panel
which we will label Target 3 (T3). This panel represented 16 full and
11 sub pixels. Truth masks identifying target locations were created
by a group at MIT’s Lincoln Laboratory.

The target space was created using Eq. (1) where the mea-
surement of the targets reflectance, r(λ ) was obtained using a hand
held spectrometer. Known MODTRAN input parameters included
atmospheric and aerosol model (desert extinction), sensor altitude,
day of year, latitude, longitude, and time of day. Other input para-
meters, such as visibility, ground elevation, and water vapor scale
factor, were varied. For this scene, four visibility values (15 to 40



Figure 2. Illustration of the 180 vector target space. Over plotted (heavy black

line) is an image derived (T3) target pixel.

km) were used along with three elevation values (scene elevation ±
50 feet). The five water vapor scale factors used (0.3 to 0.7) were
derived from water vapor maps computed using two different at-
mospheric compensation algorithms. Since the terrain seemed fairly
flat and open, the target illumination (orientation) was only varied
by ±10% with the shape factor set to one. This produced a target
space containing 4 ·3 ·5 ·3 ·1 = 180 vectors. Figure 2 illustrates all
180 vectors in the target space along with an overlayed image pixel
of the desired T3 target panel. The target and background spaces
were then represented using endmembers found by implementing
the Maximum Distance method (MaxD) [7]. These endmembers
were used in Eq.’s (5) and (6) to formulate the required projection
operators.

One problem that plagues the vector algebra approach to back-
ground characterization is the fact that one runs the risk, depending
on target/background contrast, of selecting a desired image target
as a background endmember. If this happens, the target signature
will be grouped with the background description and will ultimately
get suppressed in the detection stage, where we look to suppress the
background only. To circumvent this dilemma, we seek background
endmembers using an augmentation approach. In this approach, we
simply augment the background data vectors with the physics de-
rived target space vectors. The idea is that we are trying to mask
or shield the actual target image pixels with the physically derived
ones. If the shielding process is successful, then the endmember
finding routine will locate the physically derived vectors before it
finds the actual target image pixel. Since we know which vectors
went into the augmentation, we can check for them and remove them
accordingly after the endmember selection process.

The results of applying the PBosp and SIP algorithms to the
desert scene can be summarized in the 2D scatter plot of Figure 3.
This is a plot of the normalized PBosp detector versus the SIP met-
ric. For visualization purposes, 10 of the more interesting targets, in-
cluding T3, have been identified and labeled. Here we see that most
pixels have low abundances and are associated with the background
while the interesting pixels tend to manifest themselves outside this
background distribution. We also notice that target T3 has relatively
high abundance with a low SIP value, which is desired.

Another way to view the PBosp detector values, relative to the

Figure 3. Two dimensional decision space created using the PBosp detec-

tor with the added SIP metric, as applied to the hyperspectral desert imagery.

Illustrated are thresholds established using a simple slope technique.

background distribution, is to generate a histogram of all the scores
while simultaneously labeling interesting or target-like pixels. That
is, we marginalize the PBosp axis. This method of visualization can
be seen in Figure 4. For continuity, we have kept the same color
coding as that established in Figure 3. We can see, again, that most
of the scores have low abundances and are associated with the back-
ground. If we simply set a linear threshold in the PBosp axis only,
we will incur many false alarms due to targets T2 and T5 (which is
also a green cotton/nylon fabric). However, we can mitigate these
false alarms and therefore improve performance by setting an addi-
tional constraint for the SIP values on the x-axis. One such method
is to set a linear threshold on both the PBosp and SIP axes. This
approach has been implemented and is currently being further de-
veloped [8].

Another simple approach involves image division. That is, we
seek those pixels with both large abundances and low infeasibility
scores. This desired maximization can be obtained by simply divid-
ing the PBosp scores by the SIP values, on a per-pixel basis. This
ratio generates a one dimensional decision space. The histogram of
these “new” scores can be seen in Figure 5. We now notice that those
pixels with both large abundance and low infeasibility have further
separated themselves from the background. From this Figure, we
can identify a region in which to establish a reasonable threshold,
m = 0.3. This one dimensional threshold manifests itself as a line,
with a slope of m, in the two dimensional decision space, as can be
seen in Figure 3. Expressed as a binary hypothesis test we have

H0 : Target Present

H1 : Target Absent

where we accept the null iff γi ≥ m where

γi =
PB ospi

SIPi
+bo for i = 0,1, . . . ,N (7)

where N is the total number of pixels and bo is an abundance offset,
usually set to zero. With m = 0 and bo set to an abundance value,
say 0.6, we have the classic linear threshold in the PBosp axis, as
can be seen in Figure 3.



Figure 4. Histogram of PBosp scores, normalized. Interesting targets have

colored delta functions associated with them and are usually above the back-

ground distribution.

This method of creating a one dimensional threshold is best
suited for pixels with both moderate to large abundance and reason-
ably small SIP scores. It does not perform well in further separating
pixels that have moderate to low abundances and small SIP scores.
This is because of the 1/x type mapping of the PBosp/SIP scores in
addition to the fact that the method does not take into account the
increased target/background variability seen with decreasing abun-
dance. An approach that considers these variables is currently being
investigated [4, 8]. However, it does provide for a fast, simple one
dimensional technique that further enhances a likely targets contrast,
relative to the background.

Conclusions
The research presented in this paper explored methods of im-

proving target detection using the concept of physics based model-
ing. The work builds upon an original body of work related to de-
tection using illumination invariant subspaces. In this paper we con-
tinue to refined the process of creating target spaces as well as imple-
menting detectors and metrics that could adapt to such spaces. Two
such algorithms, the PBosp detector and SIP metric, were applied to
HYDICE desert imagery. Physically derived target sub-spaces were
created and together, with the detection and infeasibility algorithms,
were used to generate two dimensional decision spaces. Visualiza-
tion of these spaces was explored using 2D scatter plots and 1D his-
tograms. From this, a one dimensional linear threshold criteria was
established based on the ratio of the PBosp and SIP algorithms. This
method proved to be useful for further separating targets with mod-
erately high abundances and low SIP scores. It does not, however,
take into account the joint statistics of the target and background
spaces. Future efforts will address linear and non-linear thresholds
as well as the inclusion of sensor noise and calibration errors into
the target space.
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